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ABSTRACT

Health care is increasingly focused on health at the individual level. In the rapidly evolving field of precision nutrition, researchers aim to identify
how genetics, epigenetics, and the microbiome interact to shape an individual’s response to diet. With this understanding, personalized responses
can be predicted and dietary advice can be tailored to the individual. With the integration of these complex sources of data, an important aspect
of precision nutrition research is the methodology used for studying interindividual variability in response to diet. This article stands as the first
in a 2-part review of current research investigating the contribution of the gut microbiota to interindividual variability in response to diet. Part I
reviews the methods used by researchers to design and carry out such studies as well as the statistical and bioinformatic methods used to analyze
results. Part II reviews the findings of these studies, discusses gaps in our current knowledge, and summarizes directions for future research. Taken
together, these reviews summarize the current state of knowledge and provide a foundation for future research on the role of the gut microbiome
in precision nutrition. Adv Nutr 2019;10:953–978.
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Introduction
Review outline and scope
Studies investigating the role of the gut microbiota in
precision nutrition, rather than focusing on average effects,
focus on interindividual variability in response to diet and
investigate the potential of the gut microbiota to influence
personalized response. The field of gut microbiota research
connects many different topics of investigation. This review
covers recent studies and methods for assessing the effect of
the baseline state of the microbiome on host response to diet.
For a more detailed account of search methods and selection
criteria for studies included, please refer to Part II of this
review.

The first part of this review provides a summary of
the methods used to conduct these precision nutrition
studies. First, the intersection between precision nutrition
and the gut microbiota is introduced. The following sections
detail the methods used to conduct studies investigating
the gut microbiota’s role in precision nutrition, including

study design, dietary interventions, and response criteria.
Methods used to analyze the data produced by these studies
are then summarized, including microbiome and statistical
analysis methods. A discussion of future directions for
precision nutrition-microbiome research and final remarks
then follows. For a summary and discussion of the results
of the studies included, please refer to Part II of this
review.

Precision nutrition
There will always be variability in how individuals respond
to diet, in both direction and magnitude of metabolic
response (e.g. weight gain, postprandial glucose, etc.). This
interindividual variability has important implications for
the efficacy of certain nutrients or dietary patterns in
improving or optimizing an individual’s health. In other
words, what works for one person will not necessarily
work as well or in the same way for another. As a result,
identifying factors that contribute to an individual’s response
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Figure 1 Numerous research fields are integrated and contribute
to our overall understanding and study of personalized health and
nutrition.

to diet, as well as devising methods of personalizing dietary
recommendations, is critical.

Precision nutrition is a rapidly developing field of research
incorporating a multitude of disciplines including nutrition,
microbiology, genetics, epigenetics, metabolomics, and oth-
ers (1) (Figure 1).

Subfields of precision nutrition include nutrigenetics
and nutrigenomics, which study interactions between the
human genome and diet (2). These fields examine how
genetics, epigenetics, and the microbiome influence dietary
response and requirements whilst also being influenced
by dietary intake. The result of these interactions is a
complex network of metabolic and physiologic processes that
define the metabolic phenotype of an individual. Metabolic
phenotype can be measured by traditional indicators such
as weight, blood pressure, or fasting glucose or by more
complex data such as metabolomics, transcriptomics, and
proteomics. In combination, these data contribute to our
understanding of the processes occurring inside the body
as a result of the interconnected influences of diet, the
microbiome, genetics, and epigenetics. The potential to
predict an individual’s response to diet and to optimize an
individual’s metabolism using diet depends on identifying
the biological or physiological features that are relevant to
dietary response, determining how these features interact
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and react to form a response, and understanding how these
responses combine to affect human health.

The microbiome: effect compared with effect
modification
The body of research on the human microbiome, and par-
ticularly the gut microbiome, is growing rapidly. The effects
of the gut microbiome extend far beyond the gastrointestinal
system, influencing immunity (3, 4), metabolism (5, 6), and
brain function (7, 8); in short, everything we require to
function as human beings.

However, it is important to distinguish the role of the
microbiome as a mediator of the effect of diet on metabolism
from the potential of the microbiome to be an effect modifier
of response to diet (Figure 2). In the former, diet acts
directly on the gut microbiota, altering its composition
or function (postintervention microbiome), which then
alters host metabolism. In the latter, the effect of diet on
metabolism depends on the microbiome, but this effect is not
the result of diet-induced changes to the microbiome. For
example, preintervention measurements of the microbiome
may be used as effect modifiers in an analysis whereas
postintervention measurements of the microbiome may
serve as mediators. This distinction helps to avoid the circular
logic of the effect of the diet on the gut microbiome and the
effect of the gut microbiome in response to diet (Figure 3).
Although these 2 concepts are inexorably intertwined, they
are distinct and require their own independent questions and
investigations. This review focuses on the question of effect
modification by the gut microbiota and the role this plays in
precision nutrition.

Current Status of Knowledge
Methods for conducting precision nutrition studies
Aspects of study design, dietary intervention methods, and
response criteria are discussed below and are summarized for
recent studies in Table 1.

Study design.
Table 2 summarizes key features of the design of dietary
intervention studies. The most common approach for in-
vestigating personalized response to diet is a controlled
intervention cohort study. For example, 51 out of the 55
studies conducted between 2000 and 2019, were intervention
cohort studies in living organisms (humans or rodents).
Three studies examined the effect of supplementing nutrients
to in vitro cultures from human stool (9–11). Just 2 were
observational, cross-sectional studies (12, 13).

Intervention studies allow researchers to standardize
the dietary stimulus, providing every participant the same
amount (or relative amount) and type or quality of ingredi-
ents. Interventions involving humans or animals supplement
participants’ habitual diets or completely standardize diets by
providing all meals during the intervention period. Although
standardizing participants’ diets reduces variability, it is
both expensive and intensive, and requires a much greater
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FIGURE 2 Mediation compared with effect modification. When investigating the effect of diet on the gut microbiome and human
health, for example in a study investigating the effect of a dietary intervention on weight loss, the gut microbiome may act as a mediator
of effect or as an effect modifier. In the former, the intervention modifies the gut microbiome, which then affects changes in metabolism.
In the latter, the intervention may cause changes in metabolism without altering the gut microbiome but these changes may be modified
by the preintervention microbiome.

commitment from subjects compared with supplementing
the diet. Studies that choose to supplement participant diets
collect dietary recall information in order to account for this
source of variability. In addition, a control group is typically
included in the design to control for, or identify, variability
unrelated to the intervention. If the supplement takes the
form of nutrient capsules or pills, then a placebo control
group that is indistinguishable from the true intervention
should be used. On the other hand, if the supplement is a type
of food or a dietary pattern, then a decision on the control
group is not straightforward. Ideally, the control food or diet
should physically resemble the intervention food and have
a similar taste profile. When this is not possible, contrasting
foods may be used, but it must be acknowledged that this is
not a true control, but rather a separate intervention.

Both parallel and cross-over study designs are used in
dietary intervention studies. In a parallel design, different
participants are assigned to each intervention group; in
a cross-over design the same participants receive each
intervention. There is typically greater natural variation
between the control and intervention groups in a parallel
design, requiring a larger sample size to identify significant
treatment effects. In contrast, a cross-over study reduces the
uncontrolled variation between the intervention and control
arms, but introduces the potential for a carry-over effect.
In both cases, a randomization scheme is implemented,

randomizing either the order of treatments (cross-over)
or the assignment of individuals to separate treatments
(parallel).

Randomized, controlled clinical trials with a standardized
diet are generally considered the “gold standard” (14) in
dietary intervention trials because the potential for con-
founding is minimized and the estimated intervention effect
can be interpreted causally. Identifying the appropriate con-
trol is challenging with diet interventions that are designed
with whole foods, as a true placebo diet is not possible.
For example, the effect of a standardized diet may vary
depending on how different it is from the habitual diet of
the study participants. Thus, in the attempt to control one
source of variation, another is introduced. Therefore, when
considering individual nutrients or dietary components, it
may be more advantageous to allow participants to continue
eating their habitual diets so that any change during the study
period within the individual can be attributed to the specific
change introduced.

Ultimately, the study design must take into account
the dietary intervention being introduced, the resources
available, and the responses being measured.

Dietary intervention.
Three main categories of dietary interventions have been
used in precision nutrition-microbiome studies: fiber; energy

Gut microbiome and precision nutrition: Part I 955



FIGURE 3 Diet and the microbiota. Dietary factors influence the
composition and function of the gut microbiota. Research now
shows that the microbiota can also impact the effect of diet on
individuals’ health and metabolism. Despite the appearance of
circular logic, these are distinct concepts.

restriction and excess; and bioactives, fermented products,
and other dietary components. Many studies investigating
the effect of the microbiota on metabolic response to
diet have employed interventions involving dietary fiber
or other nondigestible dietary components (9, 10, 15–35),
as these compounds cannot be hydrolyzed by endogenous
human enzymes (36) and are thus able to pass through
the upper gastrointestinal tract largely intact and enter the
large intestine where they can be fermented by the gut
microbiota. These compounds serve as a primary source of
fuel for this community (36). As the microbiota has also
been shown to influence energy harvest and predisposition
to obesity (37, 38), a number of studies have also looked at
the effect of the gut microbiota on response to an energy-
restricted or high-energy diet (39–51). The effect of the gut
microbiome on metabolic response to macronutrient dis-
tribution (52), micronutrient content (53), dietary patterns
(54–57), polyphenols and other plant-based compounds
(13, 58–61), animal products (62), probiotics (63–68), as
well as antibiotics and certain drugs (69–72) has also been
investigated. Dietary interventions may be targeted, such as
supplementing an isolated nutrient in the participants’ diets
(e.g. fiber), or broad, such as altering the participants’ entire
dietary pattern (e.g. low fermentable oligosaccharides, disac-
charides, monosaccharides and polyols [FODMAP] diet).

Response criteria.
Similar to the choice of dietary intervention, how studies
define “response” may also be targeted or broad (e.g.
lipid profile or HDL-cholesterol), continuous or categorical
(e.g. bodyweight compared with overweight/obese). Dif-
ferent studies have used different biological indicators of

“response,” even studies implementing the same dietary
intervention (Table 1, Responder Criteria). However, there
are some general trends. For instance, all 12 studies using
an energy-restricted or high-energy diet analyzed differences
in weight gain/loss or changes in body composition (39–
50). Changes in circulating lipids (39–41, 43, 48, 50), insulin
sensitivity/resistance (39–41, 43), or inflammatory markers
(39–41, 48) were also common measured responses. Fiber-
intervention studies (9, 10, 15–35) measure many of these
same variables but also often include SCFAs (9, 20–24,
25, 26, 30, 34), which are one of the major metabolites
produced by the gut microbiota during fermentation of
dietary carbohydrates and have many biological effects (73).
Changes within the gut microbial community as well as
metabolites and clinical markers produced and/or influenced
by the gut microbiota have also been used as indicators
of responsiveness (9, 13, 15, 17, 23, 24, 27–29, 31–34, 42,
48, 59, 62, 68). Thresholds used to define response or
differentiate individuals vary based on the variables being
measured and are generally not standardized. Ideally, such
thresholds should be based on clinically relevant effects
or standardized health recommendations. If there are no
standardized recommendations or limits for the variables
being measured, it is important that studies clarify the clinical
relevance of their findings.

Methods for analyzing precision nutrition data
Laboratory analytical methods for gut microbiome data.
The microbiome can be measured using a variety of methods
(Table 3, Microbiome Measures), which are subject to
their own inherent limitations and biases (74), making
comparisons between studies using different methods diffi-
cult. Additionally, differences in sample collection, sample
preparation, PCR amplification, and bioinformatics pipeline
(75) contribute additional variability, further complicating
comparisons. Thus, it can be difficult to make broad
conclusions regarding the effect of the microbiota when
looking at findings in the literature. A brief overview of
the different methods and their protocols, advantages, and
disadvantages is provided here but, for further discussion,
readers are directed to additional reviews of this topic (74,
76).

In early studies of the gut microbiome, culturing was the
primary method used to investigate the growth and activity
of microbes. However, the majority of gut microbes have not
been cultured successfully (74) and this technique is labor
intensive. Thus, advances in sequencing technology have led
to rapid adoption of culture-independent techniques.

Most of these techniques are based on analysis of the 16S
ribosomal RNA (rRNA) gene, which provides a phylogenetic
marker for different bacterial taxa. The 16S rRNA gene is
ubiquitous among bacterial species with extreme sequence
conservation, which can be targeted for amplification, as
well as variable domains that can be used to classify taxa
(79). Some methods also utilize the recombinant protein A
(recA) gene, which has been suggested as a potential marker
to identify higher taxonomic ranks because of its ubiquity

956 Hughes et al.
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TABLE 2 Features of dietary intervention design

Study design Observational Intervention

Intervention Parallel Cross-over
Control Placebo (e.g. placebo capsule vs. polyphenol capsule) “Typical” diet option (e.g. white bread vs. whole-grain

bread)
Diet intervention type Diet standardization (e.g. all food provided) Diet supplementation (e.g. dietary component of

interest is provided)
Diet intervention content Targeted dietary component (e.g. source of fiber,

polyphenols, etc.)
Broad dietary pattern (e.g. Mediterranean diet,

Western diet, etc.)

and house-keeping function in bacteria (80). Protocols such
as multilocus sequence typing (MLST) (81) may also rely
on multiple house-keeping genes. This technique, however,
requires either a completely sequenced bacterial genome or
one that contains all the loci necessary for MLST (typically
7 loci) (81) and, due to the variability of house-keeping genes,
does not provide sufficient discrimination except between
closely related bacteria (82).

Before any of these techniques are implemented, sam-
ples are first subjected to PCR, amplifying the genetic
material in the sample. Sequence identification of PCR
amplicons of the 16S rRNA gene can only be used to
provide relative abundance of the gut microbial taxa. In
contrast, qPCR, or real-time PCR, measures amplification of
DNA in real-time using fluorescence of hybridized probes
specific for individual taxa, allowing for more accurate
quantification (74).

Once amplified, DNA can be used for a variety of methods
to compare and identify samples. Denaturing gradient gel
electrophoresis and terminal restriction fragment length
polymorphism (T-RFLP) are fingerprinting techniques that
separate mixtures of 16S rRNA gene amplicons into bands of
various sizes based on enzymatic cut sites. However, although
these methods can be useful for checking the stability of
dominant members and clustering communities according
to these dominant members, they do not provide direct
phylogenetic identification and it is difficult to relate banding
patterns to changes in particular species (83, 84). When
coupled with 16S rRNA sequencing, these methods can
provide more specific composition information. DNA mi-
croarrays, which utilize oligonucleotide probes immobilized
onto a glass slide to hybridize to complementary nucleotide
sequences, provide phylogenetic identification. However,
this method is subject to potential cross-hybridization
(hybridization of multiple probes to single targets), can have
difficulty detecting low abundance taxa, and is limited to
identifying species that will hybridize to the probes provided
on the slide (74).

Sequencing has become the most widely adopted method
for taxonomic identification. Direct sequencing of the 16S
rRNA gene provides only taxonomic (i.e. composition) in-
formation. Alternatively, metagenomic sequencing provides
information regarding all genes present in the sample (i.e.
composition and function). Although advances have led to

a substantial reduction in the cost of direct sequencing (85),
metagenomic technologies and other “omics” techniques,
such as metatranscriptomics, that require much greater
sequencing depth (86, 87) remain costly. A challenge for both
methods is that they are computationally intense and require
expertise to analyze the data that are generated. Additionally,
the bioinformatics techniques used for analysis can have a
significant effect on the results and interpretation of raw data
(75).

The appropriate methods to use depend on the resources
available as well as the features of the microbiome being
investigated. The aspects of the microbiota (e.g. composition,
function, relative compared with absolute abundance, etc.)
that are most informative depend on the dietary intervention
and response variables being investigated.

Normalization and transformation methods for gut
microbiome data.
Microbiota sequence count data often require normalization
and/or rarefaction to avoid biases due to uneven sequencing
depth (88) and to allow the comparison of data from
different samples (89). The most common normalization
technique, total sum scaling (TSS), divides the number of
reads assigned to a certain taxa by the total number of reads
in the sample (90). This method, although straightforward,
has been shown to bias estimates in some data sets due
to differential amplification efficiency of certain taxa (88).
Cumulative-sum scaling (CSS) divides raw counts by the
cumulative sum of counts up to a percentile determined by
the nature of the data set (88). Data can also be rarefied, rather
than scaled. Rarefying draws randomly without replacement
from each sample such that all samples then have the
same total count and excludes samples with total counts
below that defined threshold (89). Rarefaction curves can
provide guidance to determine proper rarefaction depth for
a specific data set but, depending on how much data is
removed, rarefying can reduce statistical power (89) and has
been denounced by some (91). The choice of normalization
method depends on data characteristics such as library
size (89).

Another issue is the distribution of the data. If studies
plan to utilize parametric statistical tests, such as a t-test
or ANOVA, data must sometimes be transformed to make
the distribution more Gaussian. Data can be transformed
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TABLE 3 Review of methods used to analyze precision nutrition studies1

Citation Microbiome measures
Association or
prediction Statistical methods

Fiber
Korpela et al. (2014)

(15)
Microbiota composition (HITChip microarray) Prediction Linear models

Logistic regression
Independent test cohorts
AIC
Correlation criterion

Korem et al. (2017)
(16)

Microbiota composition and function (16S and
metagenomics)

Prediction Linear mixed model
PCA, PCoA (Bray–Curtis)
Stochastic gradient boosting regression
Internal leave-one-out cross-validation
AUC criterion

Smits et al. (2016) (17) Microbiota composition (16S) Prediction PCA, PCoA (Unweighted UniFrac)
Mann–Whitney–Wilcoxon test
Wilcoxon rank test
Mantel’s Pearson test
Procrustes transformation
Random forests
LDA

Hjorth et al. (2017) (18) Microbiota enterotype (Prevotella to Bacteroides
(P/B) ratio, qPCR)

Association Parametric (t-test) or nonparametric (Wilcoxon
rank-sum) 2-sample test
Chi-square test
Linear mixed models

Roager et al. (2014)
(19)

Microbiota enterotype (Prevotella to Bacteroides
(P/B) ratio, qPCR)

Association Mann–Whitney U test or unpaired t-test Wilcoxon
signed-rank test or paired t-test
Chi-square test
PCA

Zhao et al. (2018) (20) Microbiota composition and function
(metagenomics)

Association 2-way and 1-way ANOVA
Mann–Whitney test
PCoA (Bray–Curtis)
Procrustes analysis
Wilcoxon matched-pair signed-rank test
Network plots

Kovatcheva-Datchary
et al. (2015) (21)

Microbiota composition (16S and 16S qPCR) and
function (shotgun metagenomics, MG-RAST)

Association Spearman’s correlation
2 group comparison: Student’s t-test, Wilcoxon
matched-pairs signed-rank test, and
Mann–Whitney U test
3 + comparison: ANOVA
PCoA (Unweighted UniFrac)

Chen et al. (2017) (9) Microbiota enterotype (Prevotella or Bacteroidetes,
16S)

Association RDA
PCoA (weighted Unifrac)
Chi-square test
Procrustes analysis

Salonen et al. (2014)
(22) and Walker
et al. (2011) (23)

Microbiota composition (HITChip microarray,
qPCR)

Association Linear mixed models (random effects regression,
hierarchical generalized linear models)
Pearson’s correlation
ANOVA

Tap et al. (2015) (24) Microbiome composition (qPCR, 16S) and
function (metatranscriptomics)

Association Co-inertia using RV coefficient
Wilcoxon signed-rank test
Spearman correlation

Martinez et al. (2010)
(77)

Microbiome composition (16S, DGGE, Bif.-specific
qPCR)

Association 1-way ANOVA

Martinez et al. (2013)
(25)

Microbiota composition (16S) Association Pearson’s correlation
Linear model

Venkataramaran et al.
(2016) (26)

Microbiome composition (16S) Association k-means clustering
Random forests
LEfSe

Davis et al. (2011) (27) Microbiome composition (plate counts,
PCR-DGGE, qPCR)

Association ANOVA

Bouhnik et al. (2004)
(28)

Microbiota composition (plate counts) Association ANOVA
Wilcoxon signed-rank test
Bonferroni test

(Continued)
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TABLE 3 (Continued)

Citation Microbiome measures
Association or
prediction Statistical methods

Tuohy et al. (2007) (29) Microbiome composition (FISH) Association Paired t-test
Eid et al. (2015) (30) Microbiota composition (FISH) Association Linear model

ANOVA
Paired t-test

Tuohy et al. (2001) (31) Microbiome composition (FISH) Association Paired t-test
Kolida et al. (2007) (32) Microbiota composition (FISH) Association Paired t-test
de Preter et al. (2008)

(33)
Microbiota composition (DGGE, qPCR) Association Paired and unpaired t-tests

Pearson correlation
Sonnenburg et al.

(2010) (10)
Microbiota composition (qPCR) and function

(protein expression)
Association Paired t-test

Holscher et al. (2015)
(34)

Microbiota composition (16S) Association Linear mixed models
Mann–Whitney test
Pearson’s correlation
PCoA (Unweighted UniFrac)

Fuller et al. (2007) (35) Microbiota composition (Bifidobacteria
abundance by qPCR)

Association ANOVA, ANCOVA

Energy restriction and excess
Cotillard et al. (2013)

(39)
Microbiota richness and composition

(metagenomic sequencing)
Prediction PCA

DBA score
Internal cross-validation + independent test
cohort
AUC criterion

Shoaie et al. (2015)
(40) (using data
from Cotillard
et al.)

Microbiota richness and composition
(metagenomic sequencing)

Prediction CASINO

Kong et al. (2013) (41) Microbiota composition (qPCR of 7 bacteria) Prediction BN analysis
Internal leave-one-out cross-validation
AUC criterion

Griffin et al. (2017) (42) Microbiota richness, composition (16S) Prediction and
association

Random forests
Internal cross-validation

Piening et al. (2018)
(43)

Microbiota composition (16S and metagenomics) Prediction t-tests
Random forests
AdaBoost Classification
ANOVA
General linear models
LASSO

Santacruz et al. (2009)
(44)

Microbiota composition (qPCR) Association Mann–Whitney U test
Wilcoxon signed-rank test

Hjorth et al. (2019) (45) Microbiota composition (16S) Association 1-way ANOVA
Pearson’s chi-squared test
Pearson’s correlation
Linear mixed models
Post hoc t-tests

Kreznar et al. (2017)
(46)

Microbiota composition and function (16S,
metagenomics)

Association ANOVA
2-tailed unpaired Student’s t-test
(Mann–Whitney U test for nonnormally
distributed samples)
PCA, PCoA (Unweighted UniFrac)
PERMANOVA
Pearson correlation

Parks et al. (2013) (47) Microbiota composition (16S) Association Linear mixed models
Biweight midcorrelation
PCoA (Unweighted UniFrac)

Dao et al (2016) (48) Microbiota composition and richness
(quantitative metagenomics, (Akkermansia
muciniphila abundance also by qPCR)

Association BN
BIC
Paired t-tests or ANCOVA
Wilcoxon rank-sum or Kruskal–Wallis
Spearman correlation

Carmody et al. (2015)
(49)

Microbiota composition (16S) and function
(PICRUSt)

Association Wilcoxon rank-sum test
LEfSe
PCoA (Bray–Curtis, Unweighted UniFrac)
PERMANOVA

(Continued)

Gut microbiome and precision nutrition: Part I 965



TABLE 3 (Continued)

Citation Microbiome measures
Association or
prediction Statistical methods

Zou et al (2019) (51) Microbiota composition and function
(metagenomics)

Association Wilcoxon rank-sum testPearson’s chi-square
testPERMANOVA

Muñiz Pedrogo
et al. (2018) (50)

Microbiota composition (16S) and function
(PICRUSt)

Association Wilcoxon rank-sum test
LEfSe
PERMANOVA
Wilcoxon signed-rank

Bioactives, fermented products, and other dietary components
Faith et al. (2011) (52) Microbiota composition (shotgun sequencing)

and gene expression (RNA-seq)
Prediction Linear model

Internal cross-validation + multiple
independent test cohorts

Zeevi et al. (2015) (54) Microbiota composition and function (16S,
metagenomics)

Prediction PCoA (Bray–Curtis)
Pearson correlation
Linear regression
Gradient boosting regression
Internal cross-validation + independent test
cohort
PDPs
iAUC

Mendes-Soares et al.
(2019) (57)

Microbiota composition and function
(metagenomics)

Prediction Pearson correlationAUC criterionStochastic
gradient boosting regression

Le Chatelier et al.
(2013) (12)

Microbiota richness, composition, and function
(metagenomics, microarray)

Prediction DBA score
Internal cross-validation + independent test
cohort
AUC criterion

Bennet et al. (2018)
(55)

Microbiota compostion (GA-map Dysbiosis Test) Prediction OPLS-DA
Internal leave-one-out cross-validation

Kolho et al. (2015) (69) Microbiome composition (microarray and qPCR) Prediction Linear mixed effect models
PCoA (Bray–Curtis)
Internal cross-validation
AIC
AUC criterion

Cho et al. (2017) (62) Microbiota composition (16S) Association ANOVA
ANOSIM
Unpaired t-test
PCoA (Unweighted UniFrac)

Suez et al. (2014) (78) Microbiota composition (16S) Association ANOVA
Unpaired t-test
G-test
PCoA (Weighted UniFrac)
Pearson and Spearman correlation
Mann–Whitney U test

Kang et al. (2016) (58) Microbiota composition (16S) and function
(PICRUSt)

Association ANOVA
ANCOVA
PCoA (JSD; Euclidean; Bray–Curtis; UniFrac,
weighted and unweighted)
Clustering (Calinski-Harabasz pseduo F-statistic;
Rousseeuw’s Silhouette internal cluster quality
index)

Possemiers et al.
(2007) (59)

Microbiota composition (qPCR) Association Spearman correlation
Kruskal–Wallis

Hullar et al. (2015) (13) Microbiome composition (16S) Association Linear regression
Multivariate regression
ANOVA
PCoA (UniFrac, weighted and unweighted)
PAM clustering

Romo-Vaquero et al.
(2019) (60)

Microbiome composition (16S) Association Shapiro–Wilk test
Wilcoxon signed-rank test
Bonferroni t-test
Kruskal–Wallis
Dunn’s test
PCA
HCA
Multinomial logit model
Spearman’s rank correlation

(Continued)
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TABLE 3 (Continued)

Citation Microbiome measures
Association or
prediction Statistical methods

Li et al. (2011) (61) Microbiome composition (T-RFLP 16S, qPCR) Association Student’s t-test
Fisher’s exact test
NMS
MRPP
MRBP
Cluster analysis
Linear regression

Zmora et al. (2018)
(63)

Microbiota composition and function (16S, qPCR,
metagenomics, RNA-Seq) of stool as well as
lumen and mucosa samples

Association Kruskal–Wallis
Dunn’s test
PCA
PCoA (weighted and unweighted UniFrac)
Bray–Curtis dissimilarity
Spearman’s rank correlation
2-way and 1-way ANOVA
Dunnett’s test
Sidak test
Mann–Whitney
PERMANOVA

Zhang et al. (2016) (64) Microbiota composition (qRT-PCR, 16S) Association LEfSe, Kruskal–Wallis
LMM
PLSDA
PCA, PCoA (Weighted UniFrac)
CAP
PERMANOVA
ROC analysis

Senan et al. (2015) (65) Microbiota composition (16S, metagenomics) and
Lactobacilli abundance (plating, qPCR)

Association Paired t-tests

Veiga et al. (2010) (66) Microbiota composition (16S, qPCR, RT-qPCR,
metagenomics)

Association Mann–Whitney U test
1-Way ANOVA
Wilcoxon signed-rank test
Hierarchical cluster analysis

Volokh et al. (2019)
(68)

Microbiota composition (16S) Association Mann-Whitney testk-means clustering (average
silhouette width to determine number of
clusters)MaAsLinBenjamini-Hochberg

Mobini et al. (2017)
(67)

Microbiota composition (16S) Association Repeated-measures ANCOVA
Wilcoxon signed-rank test
Mann–Whitney test and Manny Whitney U-test
Kruskal–Wallis
Spearman’s correlation

Chumpitazi et al.
(2015) (56)

Microbiota composition (16S) and function
(PICRUSt)

Association LEfSe
PCoA (UniFrac, weighted and unweighted)

Spencer et al.
(2011) (53)

Microbiota composition and function
(metagenomics)

Association paired t-test
Welch’s t test
PCA
Linear model

1AdaBoost, adaptive boosting; ADD, average Danish diet; AIC, Akaike information criterion; ANOSIM, analysis of similarities; BIC, Bayesian information criterion; Bif, Bifidobacteria;
BN, Bayesian network; CAP, canonical analysis of principal coordinates; CASINO, community and systems-level interactive optimization; DBA, decisive bacterial abundance; DGGE,
denaturing gradient gel electrophoresis; FISH, fluorescence in situ hybridization; HCA, hierarchical clustering analysis; HITChip, human intestinal tract chip; iAUC, incremental AUC;
JSD, Jensen-Shannon divergence; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminant analysis; LEfSe, linear discriminant analysis effect size; LMM,
linear mixed models; MG-RAST, metagenomic rapid annotations using subsystems technology; MRBP, blocked multi-response permutation procedure; MRPP, multi-response
permutation procedure; NMS, nonmetric multidimensional scaling ordination; NND, new Nordic diet; OPLS-DA, orthogonal projections to latent structures discriminant analysis;
P/B ratio, Prevotella to Bacteroides ratio; PAM, partitioning around medoids; PCA, principal components analysis; PCoA, principal coordinates analysis; PDP, partial dependence plot;
PERMANOVA, permutational analysis of variance; PICRUSt, phylogenetic investigation of communities by reconstruction of unobserved states; PLSDA, partial least squares
discriminant analysis; RDA, redundancy analysis; ROC, receiver operating characteristic; T-RFLP, terminal restriction fragment length polymorphism.

using an arcsine square root transformation (92), which
is the transformation used by MaAsLin (multivariate as-
sociation with linear models) (93), a bioinformatics tool
used by researchers to discover associations between clinical
variables and the microbiome. For a more comprehensive

review of such tools, please refer to Mallick et al. (94).
Log transformation is another commonly used method,
but as it cannot be applied to zeros, this method also
requires that zeros be replaced with small values (i.e. pseu-
docounts). The choice of pseudocount can influence results
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and there is currently no consensus on how to decide this
value (89).

Levels of microbiome classification.
There are many different levels at which the microbiome may
be analyzed, from broad classifications such as enterotypes
to targeted species identification. This complexity leads to
many different ways in which responsive groups may be
differentiated.

Arumugam et al. (95) first introduced the concept of
“enterotypes”, clustering individuals into 3 groups according
to their dominant genera: Bacteroides, Prevotella, and Ru-
minococcus. Although enterotypes have since been shown
to exist more on a continuous scale (96), the Bacteroides
and Prevotella enterotypes have been consistently replicated
across cohorts (97). The identification of the Ruminococcus
enterotype is more dependent on clustering and modeling
approaches (97). Studies, such as Hjorth et al. (18, 45), Roager
et al. (19), Kovatcheva-Datchary et al. (21), Gu et al. (72),
and Chen et al. (9), highlight measures such as enterotype or
the Prevotella to Bacteroides ratio. Diversity and richness are
also common measures used to highlight differences between
groups (12, 13, 21–24, 39, 40, 42, 44, 48, 62, 64, 65).

In addition to these broad groupings, individuals can
also be classified according to the presence or absence of
specific taxa, taxonomic abundance, richness and diver-
sity, functional genes, or other features. For example, the
abundance of individual taxa, such as Bifidobacterium, has
been shown to be a significant indicator of response to
fiber-based interventions (27–29, 32–35) and combinations
of taxa, Moryella, Acetanaerobacterium, Fastidiosipila, and
Streptobacillus, were found to be associated with a higher
production of the phytoestrogen metabolite enterolactone
(13). Studies such as Zeevi et al. (54), Kovatcheva-Datchary
et al. (21), Sonnenburg et al. (10), and Chumpitazi et al.
(56) also highlight differences in the abundance of functional
genes, attempting to get closer to the activity of bacteria.
These levels of microbiome classification may be combined
in order to give a comprehensive picture of the interactions
that contribute to response to diet.

Association compared with prediction studies.
When a study moves towards the analysis phase of bringing
together microbiome, diet, and metabolic response, there
are 2 steps in the process towards development of preci-
sion nutrition recommendations: 1) identifying associations
between microbiome features and dietary responsiveness
and 2) predicting and validating individuals’ response to
dietary interventions and/or advice (Figure 4). Some studies
carry out only the first step (“Association” studies, Table 3),
identifying baseline differences in the microbiota that dif-
ferentiate groups of individuals who respond differently to
dietary interventions. Other studies go further to complete
the second step (“Prediction” studies, Table 3), using an
individual’ pretreatment microbiome (sometimes in addition
to other baseline characteristics) to devise models to predict

how that individual will respond to a dietary intervention, or
to design dietary advice suitable for the individual.

Association and prediction studies share the above
methods of conducting the study and preparing the gut
microbiome data. Where they differ, is in the statistical
analysis of these data and the use of models to predict
response and validate associations found in the first step
of precision nutrition-microbiome research. It is important
to note that these goals (association and prediction) are
not mutually exclusive and several methods may be utilized
within the same study to address different scientific goals
and analyze different parts of the data set. The complexity of
the task of analyzing the microbiome and its various effects
means that this is often the case. Each of these methods
has its own advantages and limitations, which should be
recognized when presenting or comparing the results of
studies.

Association analysis methods.
Association methods define and compare groups, find
correlations, and determine significant differences (Table
4). These methods differ in the number of groups being
compared, the nature of the data being compared (i.e.
categorical or continuous), and assumptions regarding the
distribution of the data (i.e. normal, nonnormal). The
methods shown below provide a rough introduction to
statistical approaches that are currently in use for these
types of analyses. Detailed information on commonly used
methods can be found in Van Belle et al. (98). Additional
references are given as needed.

Comparing 2 groups in association studies.
The t-test compares the mean responses of 2 groups to
determine whether they are significantly different. This
would be appropriate when comparing the abundance of
a single taxa between 2 groups at 1 time point. The t-test
may be conducted on paired data (e.g. comparing means
within the same individuals at different time points as in a
cross-over design) or unpaired data (e.g. comparing means
between unrelated individuals as in a parallel design). This
approach assumes that the data are normally distributed
(parametric) or the sample size is “large.” The t-test does
not account for potential confounding factors. The Mann–
Whitney U (also called the Wilcoxon rank-sum) test is
a nonparametric (does not assume the data are normally
distributed) alternative to the t-test. When the spread
and shape of the 2 distributions are the same, the Mann–
Whitney U test compares the median of 2 unpaired samples
(e.g. between groups). The Wilcoxon signed-rank test is used
to determine if the median of the differences between paired
responses is different from zero (e.g. within individuals). For
example, comparing the abundance of a single taxa within
1 individual before and after a dietary intervention. When
the dependent variable is categorical (e.g. abundance above
or below the median), a G-test or chi-square (or Fisher’s
exact test) test may be used when the data are unpaired or
a McNemar’s test may be used if the data are paired. Both
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FIGURE 4 Steps of precision nutrition research. The 2 steps of personalized nutrition research involve 1) identifying associations between
baseline features of the individual and their response to diet and 2) testing these associations in a population to determine if predicted
responses are correct and/or if personalized recommendations based on these predictions result in better health outcomes.

methods compare the relative frequency of taxa between
2 groups to determine whether they are significantly
different.

Comparing >2 groups in association studies.
When the number of comparison groups exceeds 2, methods
such as ANOVA, permutational multivariate analysis of vari-
ance (PERMANOVA), analysis of similarities (ANOSIM),
or Kruskal–Wallis may be used. ANOVA analyzes the
differences between group means and can examine the effects
of multiple (categorical) independent variables on a single
(univariate) or multiple (multivariate) dependent variables
(i.e. 2-way, 3-way). This is useful when comparing multiple

time points or when the number of groups exceeds 2, as
in Bouhnik et al. (28), which tested 7 different types of
nondigestible carbohydrates to determine their effect on
the gut microbiota. Kruskal–Wallis is the nonparametric
equivalent of the 1-way ANOVA and has been used to
develop tools such as linear discriminant analysis effect size
(LEfSe) (99). PERMANOVA is a nonparametric alternative
to multivariate ANOVA (MANOVA) (100, 101). ANOSIM is
also used to compare multiple independent variables with a
multivariate dependent variable (101). It differs from PER-
MANOVA in that, instead of using the raw data, ANOSIM
ranks values based on their similarity/dissimilarity. This
minimizes the effects of outliers in the data, making it useful

TABLE 4 Statistical methods1

Dependent variable

Independent variable Continuous Categorical

Categorical = 2 t-test (paired/unpaired)2

Mann–Whitney U (Wilcoxon
rank-sum)
Wilcoxon signed-rank

G-test
Chi-square test
Fisher’s exact test

Categorical >2 ANOVA2

PERMANOVA
ANOSIM
Kruskal–Wallis
PCA/PCoA
k-means clustering
Calinski-Harabasz pseudo-F
Rousseeuw Silhouette index
Partitioning around medoids
Hierarchical cluster analysis

Continuous Spearman correlation
Pearson correlation
Biweight midcorrelation
Procrustes

Continuous AND categorical ANCOVA2

CAP2

Linear regression2

Linear mixed models (random
effects regression, hierarchical
models)2

Random forests2

RDA2

Logistic regression2Generalized
linear mixed
models2Random forests2

1ANOSIM, analysis of similarities; CAP, canonical analysis of principal coordinates; PCA, principal components analysis; PCoA, principal coordinates analysis; PERMANOVA,
permutational analysis of variance; RDA, redundancy analysis.2Methods may also be used for prediction.
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when data are highly skewed. Whereas classical ANOVA and
multivariate ANOVA methods use Euclidean distance, both
PERMANOVA and ANOSIM may be implemented with any
distance/dissimilarity metric.

Dimension reduction and clustering methods in associa-
tion studies.
Methods such as principal components analysis (PCA) or
principal coordinates analysis (PCoA) are used as dimension
reduction techniques that form new variables (the PCs) using
combinations of the original variables. The hope is that a
limited number of these new PCs can represent the data
almost as well as the many original variables. Addition-
ally, investigators often look for clustering of samples to
identify groups. PCA and PCoA both utilize the raw data
and are identical when the distance metric is Euclidean,
though PCoA can be used with other distance metrics,
such as UniFrac (weighted or unweighted) (102) or Bray–
Curtis (103) that are used for microbiome data. Typically,
observations are plotted on a scatterplot of the first 2
principal coordinates and data points are labeled to identify
biologically significant groups (e.g. disease, no disease).

Clustering methods such as k-means clustering (104), par-
titioning around medoids (PAM) (105), Calinski–Harabasz
pseudo-F-statistic (106), hierarchical cluster analysis (HCA)
(107), and Rousseeuw Silhouette index (108) are used to dis-
cover groups within the data. k-means clustering attempts to
identify groups within the data by minimizing the distances
between points within each group (defined by the mean
of points within that group), and maximizing the distances
between groups. Venkataraman et al. (26) used k-means
clustering to identify responsive and nonresponsive groups
based on butyrate production before and during the fiber
intervention. PAM is similar but, instead of taking the mean
of groups, chooses one datapoint to serve as the “center”
or medoid around which groups are formed. This method
was used in Wu et al. (109) to identify enterotype clusters.
Both k-means clustering and PAM require the input of a
desired or suspected number of clusters and use Euclidian
distances. In contrast, both the Calinski–Harabasz pseudo-
F and Rousseeuw Silhouette indices are used to determine
the optimal number of clusters in a data set. HCA starts with
the correlation matrix and sequentially groups variables and
clusters, progressing from smaller, less inclusive groups, to
larger, more inclusive groups until one large cluster is formed.
This produces a dendrogram, showing the relation among
the clusters, allowing the researcher to observe the clustering
structure. However, in all of these clustering methods, groups
are statistically defined and may not indicate any biological
significance.

Correlation of continuous variables in association studies.
Variables may also be continuous values along a scale
(e.g. weight, blood pressure), rather than categorical groups
within a population. In these cases, various correlation meth-
ods, such as Spearman, Pearson, Biweight midcorrelation
(110), Procrustes analysis (111), or Co-inertia using the

RV coefficient (112) can be used to assess the association
of the independent variable with a continuous outcome.
An important point to remember is that correlation, as
opposed to regression, makes no distinction between the
2 variables being used, meaning that it does not identify one
as the independent/predictor variable and the other as the
dependent/outcome variable.

Pearson (based on the raw data) and Spearman (based
on ranks and, therefore, robust) correlation coefficients both
evaluate the relation between 2 continuous variables. How-
ever, whereas the Pearson correlation assumes a linear rela-
tion and normally distributed variables, the Spearman corre-
lation only assumes a monotonic relation (i.e. continually in-
creasing or decreasing) and makes no assumption about dis-
tributions. Thus, the Spearman correlation may be preferred
for highly skewed outcomes. This may be useful when con-
sidering microbiota abundance data, which is often highly
skewed with an excess of zeros (113). Biweight midcorre-
lation also measures the correlation of pairs of univariate
measurements but differs from both Pearson and Spearman
correlations as it is based on the median of the data, rather
than the mean, making it less sensitive to outliers (114).

Procrustes analysis (111) and Co-inertia using the RV
coefficient (115) extend this idea to pairs of multivariate
measurements. Procrustes analysis, originally developed for
comparing shapes, computes the distances between pairs of
high-dimensional samples after centering and scaling. Co-
intertia analysis is a global measure of covariation between
pairs of multivariate measurements. Co-inertia is high when
the 2 sets of observations vary simultaneously (or inversely),
and low when they vary independently. These methods are
useful when comparing the similarity, or dissimilarity, of
whole microbial communities.

Combining continuous and categorical variables in asso-
ciation studies.
Some methods may be used when the independent/
explanatory variables are a mix of both continuous and
categorical variables. These include ANCOVA, regression,
linear mixed models (an extension of regression to
dependent observations), canonical analysis of principal
coordinates (CAP) (116), redundancy analysis (RDA) (117),
and random forests (118). ANCOVA compares the means of
a continuous dependent variable across levels of a categorical
independent variable (i.e. experimental groups) whilst also
controlling for the effects of other continuous variables (i.e.
covariates such as BMI, cholesterol, etc.). This could be used
to compare weight loss between groups on different diets,
whilst controlling for baseline measures such as BMI or
habitual fiber intake.

Regression refers to the process of modeling the relation
between a dependent variable and one or more independent
variables. Indeed, ANOVA and ANCOVA may be viewed
as special cases of regression. Regression models can take
several forms depending on the nature of the data. For
example, linear regression models a relation between a
continuous dependent variable that changes at a constant rate
with change in the independent variable. Generalized linear
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models extend this idea to other types of dependent variables
such as binary (logistic regression) or count (log regression)
variables. Logistic regression models the relation between
a binary dependent variable and one or more independent
variables by estimating the probability of obtaining the
outcome of interest. This can be used to determine the
association between responder status and the abundance of
one or more bacterial taxa.

Generalized linear mixed models (119) are an extension
of generalized linear models and may include both fixed
and random effects. Random effects represent factors with
levels that are considered to be randomly sampled from
some larger population. For example, individuals in a study
are randomly sampled from a larger population. Random
effects cannot be controlled experimentally. This is beneficial
when analyzing longitudinal or repeated measures (i.e.
cross-over studies) or multivariate outcomes (i.e. studies
with multiple endpoints). In the first case, each individual
contributes multiple measurements on the same outcome. In
the second case, each individual contributes measurements
on more than one outcome. In either case, the results are not
independent of one another.

CAP utilizes a distance matrix and PCoA to determine
significant differences in principal components between
groups (i.e. categorical) as well as along a scale (i.e. contin-
uous). This can be used to quantify the distance between
the microbiota composition of different groups or individuals
over time, as in Zhang et al. (64). RDA extends multiple linear
regression by summarizing the linear relations between mul-
tiple dependent variables and multiple independent variables
in a matrix, which is then incorporated into PCA. RDA could
be used to examine the effect of different components of a
dietary intervention on multiple taxa to identify microbes
that are influenced by the diet, as done in Chen et al. (9).
Random forests is a machine-learning technique that uses
multiple decision trees, each built on random samples of the
data, to estimate the mean value of the dependent variable.
Each node in the decision tree represents a condition or
question about the sample or datapoint (e.g. did butyrate
increase or decrease in this sample?). The branches extending
from these nodes represent the relevant data pertaining to
the sample (e.g. yes/no, degree of change, etc.), eventually
leading to a conclusion regarding an outcome of interest
(e.g. responder/nonresponder). This method may be used
for classification (i.e. categorical outcomes) or regression
(i.e. continuous outcomes). For instance, Venkataraman et
al. (26) used random forest regression to identify asso-
ciations between operational taxonomic unit abundances
and butyrate concentration, both before and during fiber
supplementation. Classification could be used to identify taxa
associated with either an increase or decrease in butyrate
concentration (categorical).

Correction for multiple hypothesis testing.
When analyzing the gut microbiota, a highly complex
biological system, it is often necessary to correct for mul-
tiple comparisons. This is done to avoid false positives

when conducting many comparisons simultaneously. Some
common methods used to do this are the Bonferroni
correction (120) and the Benjamini–Hochberg procedure
(121). The Bonferroni correction takes the typical error rate
(usually 0.05) and divides it by the number of tests to find
the critical value (α). The Benjamini–Hochberg procedure
instead controls the false discovery rate by ranking the raw
P values (i.e. 1, 2, …n), dividing the rank by the number of
tests, and multiplying this value by the false discovery rate
(Q), which is set by the researcher. This produces a set of
adjusted P values, which are then compared with the raw P
values. The largest raw P value that is less than the adjusted P
value is set as the threshold of significance so all P values less
than or equal to this are significant.

Prediction analysis methods.
In principle, models used for prediction require accuracy,
not biological plausibility. In practice, many models used
for prediction are developed by taking population-level
associations found using the approaches discussed above
and using these to classify and predict response. There are
2 general steps in this process: 1) model fitting and 2)
validation (Table 5).

Step 1: model fitting.
In the model-fitting step, methods such as regression,
decision trees, network analysis, and clustering can be used to
incorporate information learned in the association phase to
predict response in an individual. Many of the methods used
in the association phase may also be used in this step (see
footnote in Table 4). Here, we describe additional methods
that tend to be used exclusively when the modeling goal is
prediction.

Stochastic gradient boosting regression (122) uses deci-
sion trees on random samples of the data, similar to random
forests. However, instead of building multiple deep trees in
parallel (i.e. at the same time), it builds many shallow trees,
called weak learners, sequentially (i.e. one after the other)
(Figure 5). Each new tree improves upon the classification of
previous trees in an additive manner to reduce “loss” or error.
This method performs best when dimensionality is low (i.e.
fewer input variables) whereas random forests may perform
better when dimensionality is high (i.e. many input variables)
(123).

Bayesian network (BN) analysis (124) is a graphical model
that depicts the relations between variables and their prob-
abilities or dependencies. For instance, a BN could depict
the probability of a connection between a certain baseline
symptom or state (e.g. abundance of a certain bacterial taxa),
to one or many responses (e.g. SCFA production, glycemic
response) (that also may be connected to one another within
the network).

Linear discriminant analysis (LDA) (125, 126) is similar
to PCA/PCoA. However, in LDA, the groups of interest
are known a priori and the axes represent the linear
combinations of the measurements that best describe the
separation between the groups. This can be used to separate
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TABLE 5 Steps of predicting response1

Model-fitting phase Explanation

Linear and linear mixed effect
models

Estimates continuous response variable as a function of one or more predictor variables by fitting a best line
Linear models are “fixed-effects-only” whereas mixed effect models add one or more random effects

Logistic regression Estimates categorical values as a function of a set of independent variables by fitting to a logit function and predicting
probability

Random forests Builds deep decision trees in parallel, randomly sampling from the data set for each tree (bagging) dividing population
into groups

Stochastic gradient boosting
regression

Sequentially builds shallow decision trees to reduce residual, randomly sampling from the data set for each tree
(bagging) dividing population into groups

Bayesian network analysis Builds model representing the probabilistic relations/dependences between variables
k-means clustering Observations are clustered according to the nearest mean value, minimizing sum of squares distances within clusters

(i.e. variance), and maximizing distance between clusters (i.e. separation)
OPLS-DA Determines best predictor variables for groups defined by the user (contrast to PCA which determines best

discriminating variables for unknown groups)
Decisive bacterial abundance

score
Sums the abundances of taxa more frequent in one group (e.g. HGC) and subtracts the sum of the abundances of taxa

more frequent in the other group (e.g. LGC)
Validation phase
Internal cross-validation Model validated on the same cohort used to construct the model. Leave-one-out method uses all data minus one

subject repeatedly to construct the best-fit model
Independent test cohort Model validated on an independent cohort from the one used to construct the model
Performance criteria
Akaike information criterion

(AIC)
Estimates quality of model relative to other models in terms of goodness of fit as well as complexity of the model

Bayesian information criterion
(BIC)

Related to AIC, larger penalty for increased number of parameters in model (i.e. increased complexity of model)

Area under ROC curve (AUC)
criterion

Plots true positive rate against the false positive rate to illustrate the accuracy of a model

Correlation criterion Plots observed response against predicted response to illustrate the accuracy of a model
1DBA, decisive bacterial abundance score; HGC, high gene count; LGC, low gene count; OPLS-DA, orthogonal projections to latent structures discriminant analysis; PCA, principal
components analysis; ROC, receiver operating characteristic.

dietary groups based on metabolic or microbiome data. In
contrast, PCA/PCoA finds the linear combinations of the
measurements that maximize variance (but may or may not
separate the groups a posteriori).

Partial least squares discriminant analysis (PLS-DA) and
orthogonal projections to latent structures discriminant

analysis (OPLS-DA) (127) are extensions of LDA. Both PLS-
DA and OPLS-DA may utilize weaker sources of variation
to separate groups but OPLS-DA also eliminates variation
that is unrelated to the separation of groups, creating a less
complex model (128). Although these are powerful methods,
they may force group separation at the expense of model

FIGURE 5 Decision trees. Various methods of prediction such as random forests and stochastic gradient boosting use decision trees. In
random forests, decision trees are built simultaneously and independently of one another, using more data to build deeper trees. In
contrast, stochastic gradient boosting builds smaller trees sequentially, one after the other, with each subsequent tree learning from
previous ones.
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validity, relying on weaker sources of variability in the data
set (128).

Some studies have even devised their own methods for
prediction. Le Chatelier et al. (12) devised the decisive
bacterial abundance (DBA) score to predict individual
responses based on the abundance of taxa known to be
associated with previously identified groups (i.e. high-gene-
count and low-gene-count individuals, referring to bacterial
richness) that have been shown to have different metabolic
phenotypes.

The use of these methods, as with the methods used in the
association phase, depends on the nature and complexity of
the data as well as the desired format of prediction (i.e. group,
continuous value, etc.).

Step 2: validation.
In the validation step, the model is used to predict response
in the individuals used to fit the model (internal cross-
validation) or in new individuals (external validation) to
evaluate model performance (129). When utilizing internal
cross-validation, a common practice is “leave-one-out” in
which the model is fitted in an iterative process that utilizes
all data minus one to predict the response of the left-out data
point. The advantage of internal cross-validation is that the
data are already available and new data does not have to be
collected or obtained from another study. However, this test
is not as rigorous as testing in an independent cohort and the
model may not perform as well when applied to new data
sets. Testing a model in an independent cohort allows for
a better assessment of the applicability of the model in the
broad population.

Model performance criteria.
To assess the accuracy of the model, several performance
criteria may be used (Table 5). The Akaike information
criterion (AIC) (130) and Bayesian information criterion
(BIC) (131) refine the selection of multiple models and assess
their performance. Both methods provide an assessment
of relative performance, rather than absolute accuracy. BIC
includes a larger penalty for increased complexity (i.e.
numbers of parameters) in the model, typically resulting in
a smaller model than AIC.

In contrast, area under the receiver operating charac-
teristic (ROC) (132, 133) curve (for models that predict
binary outcomes) and proportion of variance explained by
the model (R2) (for models predicting continuous outcomes)
both assess the absolute accuracy of the model but do not
have any penalty for increased complexity of the model. This
may lead to increasingly complex models that, although they
are highly accurate on the current data set, are over-fitted and
will not perform well on an independent data set.

Future directions
Use of animal and in vitro models.
Mice offer a model in which differences in the gut microbiota
may be studied in a controlled experimental context, allowing
for the determination of causality and development of

mechanistic hypotheses (134). For example, transplantation
of isolated strains or communities of bacteria into germ-free
mice is one of the best models in use to demonstrate causal
relations between the gut microbiota and host metabolism
(135). This approach has been used in studies such as
Kovatcheva-Datchary et al. (21), which used stool samples
from individuals who did (responders) or did not (nonre-
sponders) exhibit improved glucose tolerance in response to
barley kernel supplementation to colonize germ-free mice.
Colonized mice recapitulated the response phenotype of
their respective donors, suggesting that the gut microbiome
played a causal role in the improvement in glucose tolerance.
This study also investigated the effect of monocolonization
by taxa, overrepresented in responders (Prevotella copri) and
nonresponders (Bacteroides thetaiotaomicron), and found
differential gene expression in the colonized mice that
altered hepatic glycogen storage, allowing for a mechanistic
understanding of observed differences in glucose metabolism
phenotypes.

In vitro studies take place in an isolated system, allowing
increased control over manipulation of conditions. This
strategy has been utilized to investigate gut microbiome
communities from humans (9, 59) and isolated strains (10)
to determine the effect that differences in these taxa or
communities have on the production of metabolites and
fermentation of compounds.

Both animal and in vitro models have limitations when
it comes to drawing conclusions about human health and
nutrition as they lack the specific interactions present in
the human supraorganism. For further information, readers
are directed to additional reviews of animal (136, 137) and
in vitro (138–140) models for human nutrition research.
However, these techniques used in combination with human
clinical trials will be crucial in the development of precision
nutrition research and our understanding of the interaction
between the host and the gut microbiota.

Differences in methodology.
As discussed above, studies investigating the contribution of
the gut microbiota to personalized health and metabolism
differ in what features of the microbiome are highlighted.
Two meta-analyses have attempted to integrate results from
multiple studies that have investigated the effects of the
gut microbiota on human health using different laboratory
methods and analysis strategies (141, 142). Such work is
important to improve our understanding of how the results
of these studies complement each other and how the features
or methods used affect the results.

In order to facilitate the comparison of results, some
standardization of protocols would be helpful. Obviously,
there are limits to standardization as different studies have
different scientific aims, which dictate the outcomes mea-
sured and methods of microbiota analysis. The technology
used for microbiota analysis is still developing but some
work has been done to attempt to standardize protocols
(76). However, more work is needed to develop procedures
that minimize nonbiological variability due to laboratory
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procedures, analysis pipelines, and analytical methods. It
may also be of interest to the field to determine how to
combine data collected under different protocols rather than
developing overarching standardized procedures.

Differences in microbiota features and responses exam-
ined.
Additionally, there has been no assessment of how micro-
biome features that have been found useful in prediction
of response to a certain dietary intervention translate to
prediction of response to other nutrients or for broad
dietary patterns. This is important as the taxa or features
of the microbiome that may be responsible for variability in
response to one nutrient may not be involved in or indicative
of metabolism of other nutrients. In addition to applicability
in a variety of dietary contexts, research should aim to
determine which features of the microbiome are relevant in
the context of different responses. This will allow researchers
to devise a network of effects to better understand the ways in
which the microbiota impacts our health as well as the ways
in which we may manipulate the microbiota to improve our
health.

Conclusions
As the focus of nutrition research shifts to a more indi-
vidualized view of health and diet, appropriate methods
must be developed to adequately test, detect, and validate
the features that determine individual metabolic response
to dietary components. As seen in this review, considerable
progress has been made in recent years, but there is much
that remains to be done. Current data give us only an
incomplete understanding of the complexity of the human
and microbial interaction. To get a full picture of the
individual that captures this complexity requires researchers
to learn how to design, conduct, and analyze studies that
focus on the detailed characterization of the individual and
their metabolic phenotype. Without the fine-scale resolution
that optimization of methods and addition of mechanistic
studies provide, we will be unable to interpret interindividual
differences in response to diet. Additionally, without some
way of comparing and combining the results of these studies,
we will be unable to integrate these data and apply them.
Further integration and consolidation of knowledge from the
fields of microbiology, genetics, epigenetics, and nutrition
will allow a more coherent picture to emerge.
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